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The mass, momentum and energy-transfer equations are solved to determine the 
response of a rectangular enclosure to a fire or other high-temperature heat 
source. The effects of non-participating radiation, wall heat conduction, and 
laminax natural convection are examined. The results indicate that radiation 
dominates the heat transfer in the enclosure and alters the convective flow pat- 
terns significantly. At a dimensionless time of 5.0 the surface of the wall opposite 
a vertical heated wall has achieved over 99 yo of the hot-wall temperature when 
radiation is included but hcts yet to change from the initial temperature for pure 
convection in the enclosure. At the same time the air at the centre of the enclosure 
achieves 33 yo and 13 yo of the hot-wall temperature with and without radiation, 
respectively. For a hot upper wall the convection velocities are not only opposite 
in direction but an order of magnitude larger when radiation transfer between the 
walls is included. 

1. Introduction 
I n  the last two decades efforts have been made to gain an understanding of the 

hostile free-burning fire in an attempt to achieve more effective methods of detec- 
tion and control. One of the many individual problems which must be solved to 
obtain a more complete knowledge of the total problem of fires and fire spread in 
buildings is that of understanding and predicting the processes by which heat is 
transferred from a fire to the surrounding enclosure. In  an attempt to gain some 
of the insight into the problem needed, an analysis was conducted of the mass, 
momentum and energy transfer which occurs in an enclosure owing to the pres- 
ence of a high-temperature heat source. 

There has been considerable research interest in the internal flow problem of 
enclosed natural convection in recent years, derived from such diverse applica- 
tions as double-glazed windows, gaseous-core nuclear reactors, spent-fuel ship- 
ping casks, cryogenic liquid storage and enclosed fires. A review of most of the 
early theoretical and experimental investigations is given by Elder (1965) and 
in the review article by Ostrach (1972). One of the first successful attempts at a 
numerical solution of a natural convection problem was conducted by Hellums 
& Churchill (1961). They developed an explicit transient finite-difference method 
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and obtained transient and steady-state solutions to the problem of natural 
convection on an isothermal vertical surface, for which an exact solution exists, 
and also for natural convection in a long horizontal cylinder with one vertical end 
heated and the other cooled. Wilkes & Churchill (1 966) extended the method of 
solution developed by Hellums & Churchill to analyse the problem of convection 
in a rectangular enclosure. However, they experienced instabilities which pre- 
vented them from obtaining solutions for Grashof numbers greater than lo5. The 
instabilities were attributed to the fact that the old boundary vorticities were 
assumed to be valid during the computation of the new interior vorticities over a 
time step. Numerous other investigators have studied similar internal free- 
convection problems for various geometries and parameter ranges. A few of 
particular interest include the work of Aziz & Hellums (1967), who first reported 
results on three-dimensional natural convection in a cubical cavity. Davis (1968) 
and Rubel & Landis (1969) formulated the enclosed rectangular-cavity problem 
in terms of a nonlinear fourth-order equation for the stream function without the 
explicit appearance of vorticity in an attempt to avoid the numerical instabilities 
encountered by Wilkes & Churchill (1966). The iterative solution method yielded 
steady-state results. Davis reported no numerical difficulties for Rayleigh num- 
bers as large as 2 x lo5; however, Rubel & Landis encountered, at  only slightly 
higher Rayleigh numbers (Ra = 2.4 x lo5 for Pr = 1 and Ra = 3.6 x 105 for 
PT = 6), the difficulty experienced by Wilkes & Churchill of physically impossible 
local temperature peaks. Chen (1971) demonstrated that the instabilities ex- 
perienced by Wilkes & Churchill and others were not caused by the conjectured 
boundary vorticity lag. He also showed that anomalies in the temperature profile 
predicted at high Grashof number could be eliminated by finer spatial discreti- 
zation. Torrance, Orloff & Rockett (1969) performed an experimental study of 
natural convection in cylindrical and rectangular enclosures and Torrance & 
Rocket (1 969) conducted a corresponding numerical analysis of the cylindrical 
enclosure. This appears to be the earliest work where Grashof numbers greater 
than 106 were considered. In  a separate paper, Torrance (1968) compared several 
bite-difference techniques which had been developed for the prediction of 
natural convection flows and pointed out that the bite-difference forms of the 
equations used by most previous investigators do not conserve energy or vorticity 
as do the original differential equations. Finally, Newel1 & Schmidt (1970) 
examined the problem of laminar natural convection in an enclosure over a range 
of parameters sufficient to determine a power-law correlation of the Nusselt 
number as a function of theGrashof number and aspect ratio. However, they used 
a non-conservative finite-difference scheme and were not able to obtain solutions 
for Grashof numbers greater than 105. A more complete survey and a more de- 
tailed discussion of these and other works can be found in Larson (1972). A 
thorough discussion of various numerical methods can be found in the book by 
Roache (1972). Recent related work includes that by Greenspan & Schultz 
(1974), Ozoe, Sayama & Churchill (1974, 1975), Peckover & Hutchinson (1974), 
and Cormack, Leal & Seinfeld (1974). 

The work to date on natural convection in enclosures invariably includes 
temperature-specified and/or adiabatic wall boundary conditions. In  addition, 
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certain of the solution techniques determine only the steady-state results. 
Neither of these conditions is appropriate for certain classes of problems, in par- 
ticular the enclosed-fire or heat-source problems. For an enclosed fire the tran- 
sient development of the flow patterns and the transient heat flow is of great 
interest. I n  addition, the thermal response of finite-thickness and finite-heat- 
capacity conducting walls is of interest since it would, for example, determine the 
rate of fire spread. Finally, the radiant heat transfer occurring in the enclosure 
and its influence upon the flow patterns and heat transfer have not previously 
been considered. In  this paper the transient response of a rectangular enclosure to 
a specified high-temperature heat source is studied, including the effects of radia- 
tion, wall heat conduction, and laminar natural convection. 

2. Analysis 
Physical model 

The model used for this study is illustrated in figure 1. The two-dimensional 
rectangular enclosure is surrounded by walls of uniform thickness. Initially, the 
enclosed air and walls are at some uniform temperature and the air is stagnant. 
At time t > 0 a specified high-temperature heat source is presumed to exist in 
some arbitrary (specified) part of the enclosure. For this analysis the air is con- 
fined to the enclosure and assumed to be radiatively non-participating. The basic 
assumptions made in the analysis are as follows. 

(i) The fluid motion and heat-transfer processes are two-dimensional. 
(ii) The fluid is Newtonian, compressibility is negligible, and the flow is 

(iii) Viscous heat dissipation is negligible in comparison with conduction and 

(iv) All physical properties are constant except for the density, whose variation 

(v) The walls are grey diffuse emitters and reflectors of radiation. 
(vi) The Boussinesq approximation is valid. 
The validity of the first two assumptions can be questioned for fire simulation, 

first because the size of most enclosures where fires occur is such that three- 
dimensional effects will be present and second because fully developed fires are 
highly turbulent. There are, however, other enclosed natural convection problems 
where these assumptions are realistic. In  addition, considerable insight into the 
flow phenomena and heat transfer of the problem can be gained initially without 
introducing the considerable complexity of turbulent three-dimensional motion. 
Furthermore, the two-dimensional geometry lends itself most readily to rigorous 
formulation and the solution of radiative transfer so that these effects can be 
examined. The third assumption is readily justifiable in natural convection 
flows. The assumption of constant (temperature-independent) physical 
properties is primarily a numerical convenience and is frequently adopted in 
generalized analyses in order to decrease the number of independent parameters. 
In dimensionless form the parameters of the governing conservation equations 
frequently have a much weaker temperature dependence than do the physical 

laminar. 

convection. 

with temperature is allowed for in the buoyancy term. 
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FIGURE 1. Physical model of enclosure. 

properties. Toor & Viskanta (1972) have shown that for most enclosures the 
assumption of grey diffuse walls is a reasonable approximation to reality. The 
Boussinesq approximation accounts for the density variation in the buoyancy 
term, but neglects it in the inertial terms of the equations of motion, consistent 
with the assumptions of constant physical properties. This approximation also 
implies that, in the momentum equation, P(T - T,) is small relative to unity, 
where f l  is the thermal expansion coefficient, T is the local temperature and T, 
is the mean temperature in the enclosure. The approximation is least correct for 
high-Grashof-number situations, early in the transient response particularly, 
when the temperature differences in the enclosure are large. However, Torrance 
& Rockett (1969) obtained good agreement with experimental results even when 
the Boussinesq condition was not satisfied. 

Governing equations 
The governing equations include the conservation equations of mass, momen- 
tum and energy and the radiative-transfer equations in an enclosure. The conti- 
nuity and momentum equations can be transformed to stream-function and 
vorticity equations by cross-differentiation and combining momentum equations 
to eliminate the pressure term and introducing a stream function which 
automatically satisfies continuity. For the conditions described previously, 
the equations can be expressed in non-dimensional form by introducing the 
dimensionless variables U = u/uo, V = v/uo, 8 = TIT,, X = x/L, Y = y/L, 
r = tuo/L, Q = wL/u,, Y = $/ao L, where uo = (g,6ATL)*, u is the horizontal 
velocity, v the vertical velocity, TR the maximum (source) temperature in the 
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enclosure, t the time, w the vorticity, @ the stream function, and AT the maxi- 
mum initial temperature in the enclosure. As a result we obtain the following 
set of equations; the equations are referred to as the dimensionless energy 
equation 

1 
(1) 

where Pr is the Prandtl number v/a and Gr is the Grashof number g/3ATL3/v2, the 
dimensionless vorticity-transport equation 

(2) 

the dimensionless velocity equations 

u = aY/ay, v = -arlax, (3% a) 
and the dimensionless stream-function equation 

Q = - (av/ax2 + a v / a  ~ 2 ) .  (4) 

The initial conditions in the enclosure are a specified uniform temperature and a 
stagnant gas. The boundary conditions are a specified temperature source in 
some part of the enclosure, no slip a t  the walls, and a zero value of the stream 
function at the walls. The boundary condition on vorticity is not known expli- 
citly, but this presents no particular difficulty as noted later. An energy balance 
at the wall yields the condition 

where 6 represents the dimensionless co-ordinate normal to the wall, Nk is the 
thermal conductivity ratio kw/ka, N, is the dimensionless radiation-to-conduction 
parameter aT&L/k,, Q,, = q&T& and c i s  the Stefan-Boltzmann constant. It is 
this boundary condition which couples the radiative, convective and conductive 
heat transfer in the problem. Any change in wall surface temperature simul- 
taneously affects the convection to the wall, the conduction inside the wall, and 
the net radiant heat flux at the wall. 

The above dimensionless equations are in slightly different forms from those 
developed and used by previous investigators of natural convection in enclosures. 
There are two reasons for the differences. Since there is no characteristic velocity 
under natural convection conditions there is no unique way of defining a dimen- 
sionless velocity. Instead, a reference velocity must be selected from examination 
of the physical problem and a consideration of the controlling forces. Previous 
investigators have typically selected a characteristic velocity related to the 
viscous forces, u, = $5. It appears, however, that a more meaningful dimension- 
less parameter may result, in a buoyancy-dominated situation, by relating the 
characteristic velocity to the buoyancy forces, and thus the selection u; = g/3ATL 
was made. The second reason for the differences results from the definition of 
dimensionless temperature. In  purely convective (or conductive) heat-transfer 
situations, it is convenient to define the dimensionless temperature as the ratio 
of temperature differences, and all previous analyses have done so. However, 
when radiation is also present such a definition is inappropriate since the driving 
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potential for heat transfer is no longer a linear temperature difference. Therefore, 
because of the radiative-convective coupling, the dimensionless temperature is 
defined here as a temperature ratio. 

3. Radiative heat transfer 
The equations for radiative heat transfer in an enclosure in local thermo- 

dynamic equilibrium aregiven for grey diffuse wallswithanarbitrary temperature 
distribution. The radiative flux along wall i is given by 

q;i (si) = ( ~ P J  [aTi4(sd -4(si)I9 ( 6 )  

where si represents a position on wall i, ei and pi are the emissivity and reflec- 
tivity, respectively, of wall i, and the radiosity 4(si) for plane walls is given by 
(Sparrow & Cess 1966) 

J,(s,) = €i aq4(sJ +pi I; qsj)  K(%, sj) dAj. (7) 
j=1 m !  Aj 
j+i 

The kernel K(si,  sj) is a function of the configuration. For the geometry of figure 1, 
(7) can be evaluated for each wall to yield 

Equations (6), (7) and (8) c m  readily be non-dimensionalized, but for brevity 
the results are not included here. AS a practical consideration, however, it should 
be mentioned that in solving the radiosity equations the integral terms are 
evaluated in their dimensional form and then the result is non-dimensionalized. 
This procedure takes advantage of symmetry of the kernel which would not be 
possible for any L/H =I= 1 if the equations were non-dimensionalized before evalua- 
tion of the integrals. 
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4. Heat conduction in the wall 
The heat conduction in the wall was assumed to be one-dimensional. This 

assumption is reasonable since the thermal conductivity of the non-metallic walls 
is generally quite low and the temperature gradient in the normal direction is 
considerably larger than along the plane of the wall. Therefore the dimensionless 
energy equation in the wall can be written as 

ae/& = N, N z 2  Pr-1Gr-t aw/ag2, (9) 

where N, is aw/ua, the ratio of the wall thermal difFusivity to the air thermal 
diffusivity, and NL = Lw/L. 

The external surface of the walls can either be insulated or have a specified 
convective-heat-transfer coefficient. Owing to the low conductivity of the walls 
the results for either condition are essentially the same; however, the results 
reported here assumed the horizontal walls to be externally insulated and the 
external vertical walls to have convective transfer to ambient temperature. 

5. Method of solution 
Equations (1)-(4) along with (6), (8), (9) and their appropriate initial and 

boundary conditions are sufficient to describe the problem completely. The 
equations are all coupled either through the variables or the boundary conditions 
or both. The conservation equations were solved using an alternating-direction 
implicit (A .D.I.) finite-difference scheme. The nonlinear convective terms were 
represented by an ‘upstream’ finite-difference form as suggested by Torrance 
(1 968) for buoyancy-dominated flow. 

The boundary condition on the internal wall surface must be given careful 
consideration so that the heat flux conducted into the wall is equal to the net 
flux convected (conducted) and radiated to the wall surface. The energy equation 
is solved at the surface by expanding the dimensionless temperature in a Taylor 
series at that location which, ignoring third- and higher-order terms, yields for the 
second derivative along the vertical wall 

where the nodal numbering system in the wall and in the enclosure is shown in 
figure 2. Now from the boundary condition (5)’ we have 

The radiative flux Q, is known from the solution of the radiative-flux equation 
(6) which in turn is determined from a solution of the radiosity equations (8). In  
solving the integral radiosity equations (8a-d), the kernels of the equations were 
first evaluated and stored for the geometry of interest, taking advantage of 
symmetry to save storage and computing time. The equations were then solved 
by the method of successive approximation. The integrals were evaluated by 
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FIGTJRZ 2. Representative nodal scheme in wall and enclosure for Taylor series expansion. 

Simpson's rule. The temperature gradient in the air at the wall surface must be 
evaluated by forward differences. Using a cubic polynomial approximation to 
represent the temperature of the air near the w d  and substituting (11) into ( lo ) ,  
we obtain the hite-difference form of the second derivative of wall temperature 
at the surface which satisfies the interior boundary condition. The result is 

Since the results indicate that the radiative term Nr Q, dominates the other terms 
in (12)' the finite-difference form used to evaluate the temperature gradient in 
the air has very little effect. 

Since the boundary conditions for the vorticity-transport equation are not 
known, it is necessary to determine the wall vorticities from additional consider- 
ations. Following Wilkes & Churcbill (1966) this is accomplished by a Taylor 
series expansion of the stream function in the vicinity of the wall. By using the 
boundary conditions on" and noting from the stream-function equation (4) that 
Q,,j = a2Y/aX2, an approximation for vorticity a t  the new time step at the wall 
is obtained from the values of the interior stream function, 

The stream-function equation (4) is an elliptic equation which is notoriously 
difficult and time consuming to solve by numerical methods. The method of 
successive over-relaxation (S.O.R,.) has proved quite successful and has been 
adopted by the majority of the researchers. In  a paper comparing finite-difference 
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techniques for natural convection, Torrance (1968) indicates that the solution of 
(4) is the most time-consuming portion of the problem, with one iterative sweep 
requiring as much time as the entire computation of the new temperature or 
vorticity field. For this problem a more efficient method of solving (4) was fh t  
suggested by Peaceman & Rachford (1955). The procedure is to rewrite the 
elliptic equation as a time-dependent equation, 

This equation is now of the parabolic type and can be integrated in time by the 
previously described A.D.I. method until steady state is reached. Since only the 
steady vdue is of interest here the implicit procedure allows the uee of large time 
steps, and convergence to steady state can be reached within a few iterations. 
Chen (1971) hasdemonstrated t b t ,  for a uniformlydistributederror, 14 iterations 
of S.O.R. are required to reduce the error by a factor of while the A.D.I. 
method requires 3 iterations to achieve the same error reduction. This improved 
convergence allows a considerable amount of time to be saved in the solution of 
the stream-function equation and thus permits also the use of an implicit scheme 
with large time steps in the solution of the energy and vorticity-transport equa- 
tions. Roache (1972) discusses other implications of the various methods for 
solving the elliptic equation. The velocity equations are solved using four-point 
central-difference representations of (3a and b)  a t  all nodal points more than one 
grid space away from the walls. The velocities at one grid space from the walls are 
obtained by a four-point non-central-difference form. 
The solution procedure consisted of advancing the interior temperatures 

through a time step by solving (1). The vorticity-transport equation was then 
solved for all interior (non-boundary) nodal points. Next, the stream-function 
equation WM solved. From the solution of the stream-function equation the wall 
(boundary) vorticities were updated and the velocity field at the new time step 
was determined. The radiation equations were then solved. From the temperature 
distribution in the enclosure, the convective flux to the walls was computed and 
added to the radiative flux. Finally, the temperature distribution in the walls was 
updated by solving the energy equation in the wall. The procedure was then 
repeated for a new time step. Allowance was made for iterating on the nonlinear 
terms during each time step; however, the results indicated that for reasonably 
sized time steps the iterative process was not required. Furthermore, in the 
problems involving radiation, the flow field changed much more slowly than did 
the temperature field and a considerable saving in computer time was obtained 
with no change in the results by solving the vorticity and stream-function equa- 
tions (updating the flow field) every fifth time step. 

A large number of numerical experiments were conducted in an effort to deter- 
mine the time step, grid size, and convergence criteria which would lead to a 
reasonable compromise between accuracy and computing time. An internal check 
on the solution scheme was conducted by solving selected problems with both 
explicit and implicit finite-difference techniques and also by comparing limiting 
cmes (temperature-specified boundaries and no radiative transfer) with earlier 
studies (Wilkes & Churchill 1966; Chen 1971). It was determined that for a square 
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enclosure (L/R = 1.0) a 20 x 10 grid spacing (21 x 11 nodal points) was adequate 
to resolve the qualitative trends of fluid motion and temperature and also provide 
reasonable quantitative results for Grashof numbers of 1 O6 or less. Grid spacings 
of 50 x 20 were necessary to prevent instabilities (local temperature peaks) from 
occurring up to Gr = lo9, the upper limit of laminar flow. The detailed compari- 
sons are given elsewhere (Larson 1972). The time step allowed was determined by 
numerical experiment to be controlled by the radiative heat transfer. Variable 
time steps were used since the wall surface temperature changed very rapidly 
early in the transient response but as the solution progressed smaller temperature 
changes allowed larger time steps. The effect of the time-step size was determined 
by halving the step until there was no noticeable change in the results. Typical 
run times for a 20 x 10 grid were less than 300 s for the full transient solution on a 
CDC 6600 computer. 

6. Results and discussion 
Parameters 

The large number of variables governing the problem makes a thorough para- 
metric study impractical without extensive amounts of computer time. Therefore 
the values selected for the parameters were determined as far as possible to be 
those characteristic of a typical room-size enclosure with some portion of the en- 
closure at the surface temperature of a flaming wall, albeit the Grashof number 
is artificially constrained to the laminar-flow regime for the results reported here. 
The influence of turbulent convection (Gr > loB) and radiatively participating 
combustion products was also examined and is reported in Larson (1972). The 
parameter values used in the simulations were Gr = 106-109, Pr = 0.73, Nk = 4.0, 
N, = 0.001, NL = 0.025, N, = 2000 and e = 0.6-0-9. In  general, the results are for 
a square enclosure. Analytical simulations were conducted for numerous bound- 
ary conditions in the enclosure including a hot left wall, hot ceiling, hot floor, 
local hot spot on the ceiling, and local hot spot on the floor. Because of space 
limitations only a few of the results are presented here. 

In  order to make a rapid qualitative evaluation of the temperature field and 
flow field in the enclosure a computer program was written to plot the streamlines 
and isotherms on the line printer. The array being plotted is scanned for the range 
of values and then the range is divided into 10 subranges which are each assigned 
a specific print number (or blank). The resulting field of alternate numbers and 
blanks then shows 10 % bands of the array being plotted. 

Simulation of hot left wall 

The response of the enclosure to a hot left wall (0 = 1-0) with the room initially a t  
0 = 0.3 was examined for a range of Grashof numbers from lo5 to log. 

Figure 3 shows the streamlines caused by a hot left wall for a Grashof number 
of l o 5  at four different times with e = 0.9. The streamlines develop relatively 
quickly although the initial velocities are very low. At T = 2-0, a small anti- 
clockwise eddy appears near the right wall owing to the buoyancy of the hot air 
near the wall. As time progresses the inertia of the large clockwise eddy moves 
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FIUURE 3. Streamlines in the enclosure for a hot left wall, Cr = lob, E = 0.9. (a) T = 0.2, 
(b)  T = 1.0, (c )  T = 5.0, (d )  T = 20.0. 

the smaller eddy down the wall and compresses it. I n  the figure for T = 5.0 the 
small eddy can be seen at the lower right-hand portion of the enclosure. A short 
time later the eddy is pulled off the wall and compressed near the floor and, by 
7 = 15.0, the eddy has disappeared into the main flow. Figure 4 illustrates the 
corresponding isotherms. Initially, the wall temperatures change rapidly owing 
to radiation, and the temperature of the air is increased by nearly pure conduction 
as evidenced by the linear variation of the isotherms near the walls. The influence 
of convection on the temperature profiles becomes clearly evident, however, by 
T = 5.0 as shown by the downward bending of the isotherms near the centre-line. 
At T = 20.0 the downward velocity on the right side of the enclosure deforms the 
isotherms significantly. Figure 6 depicts the development of the velocity profile 
with time at the mid-height of the enclosure. The velocity along the hot wall 
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FIGURE 4. Isotherms in the enclosure for a hot left wall, ch. = los, 6 = 0.9. (a) T = 0.2, 
(b) T = 1.0, (C) T = 6.0, ( d )  7 = 20.0. 

develops quite rapidly and reaches a maximum before dropping back to a nearly 
steady value. This is caused by the time lag required for the cool air on the right 
wall to circulate and reach the hot surface on the left. The weak eddy that devel- 
ops on the right wdl appears as a small positive velocity near the right wall a t  
T = 1.0. The eddy also creates the local maximum at x/L = 0.8 and T = 3.0. At 
T = 20.0 the velocity profile is very nearly symmetric about the centre-line of the 
enclosure. The temperature distribution at  mid-height is shown in figure 6.  The 
influence of the radiative transfer is very strong. The effect of the low-thermal- 
conductivity wall is such that the external surface of the wall has not experienced 
any temperature change even though the enclosure is approaching a uniform 
temperature. This result was typical of all the situations examined and thus the 
external surface boundary conditions had little influence on the results. 
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FIQURE 5. Velocity profile at enclosure mid-height (y/H = 0.5), hot left wall, 
Gr = 106, e = 0.9. 
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FIUIJRE 6. Temperature profile a t  enclosure mid-height (y/H = 0 6 ) ,  hot left wall, 



78 D. W .  Larson and R. Vishnta 

........................................................................ 
(4 

............................................................................ 

(4 
..... 

............................................................................... 
(d 1 

FIUURE 7. Streamlines in the enclosure for a hot Ieft waII neglecting radiant heat transfer, 
cfr = 106. ((I) 7 = 0.2, (a) 7 = 1.0, (c) 7 = 5.0, (d )  7 = 20.0. 

The effect of radiation was determined by examining the same conditions while 
neglecting radiative transfer. The development of the streamlines, shown in 
figure 7, is very similar to those including radiation, the major difference being 
that no eddy appears on the right wall since there are no buoyancy forces there. 
The isotherms, however, are considerably changed. In  figure 8 the influence of the 
moving air is first seen at 7 = 1.0 as the isotherms begin to deflect slightly out- 
wards near the ceiling, and, as convection develops, the isotherms continue to 
deform. Figures 9 and 10 show the velocity and temperature profiles, respectively, 
in the absence of radiative transfer. As seen in figure 10, the cool right wall is 
just beginning to feel the influence of the hot wall at T = 20-0 when radiation is 
neglected. 

Additional results were obtained for Grashof numbers of 106, lo7 and lo9 
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FIUURE 8. Isotherms in the enclosure for a hot left wall neglecting radiant heat transfer, 
ch. = 105. (a) 7 = 0.2, (b )  7 = 1.0, (c) 7 = 5.0, (d) 7 = 20.0. 

(Larson 1972). The early development of the streamlines and isotherms was very 
similar. However, at the higher Grashof numbers the anti-clockwise eddy appear- 
ing on the right wall is considerably stronger and is able to maintain itself, res&- 
ing in irregularly shaped streamlines and isotherms at later times. 

The influence of wall emissivity is shown in figure 11. The temperature distri- 
bution is shown along the ceiling at three different times for three different 
emissivity conditions in the enclosure. The hot wall emissivity was maintained at 
0.9, and the cool wall emissivities were set a t  0.9 or 0.6. In  addition, the results of 
a semi-grey condition are also illustrated, where the emissivities are maintained 
at 0.9 but because the radiant energy from the hot wall is maximum around 
a wavelength of 3-0pm, where some building materials have a lower absorptivity, 
the cool wall absorptivities are set equal to 0-6. 
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FIGURE 9. Velocity profile at enclosure mid-height (y /H = 0.6) neglecting radiant heat 
t r d e r ,  hot left wall, Gr = lo6. 
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FIGURE 10. Temperature profile at enclosure mid-height (y/H = 0.5) neglecting radiant 
heat transfer, hot left wall, Gr = 105. 
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It is interesting to note that early in the transient response (T < 0.3) the heat 
transfer to the right edge of the ceiling (x/L < 0.8) is increased rather than 
decreased by a decrease in emissivity. This result, surprising at first glance, is 
caused by the fact that lowering the cool wall emissivities also has the effect of 
raising their reflectivities. Since nearly all the net radiant energy is initially 
coming from the hot left wall, the increased reflectivity causes a more uniform 
distribution of radiant heat flux along the walls as evidenced by the smaller 
temperature drop across the enclosure. The net effect is an increase in heat trans- 
fer at the right edge of the ceiling. As the cool walls begin to heat up, the effect 
disappears owing to the increased heat transfer from all the walls. 

The influence of the enclosure geometry was examined by a simulation with a 
hot left wall in an enclosure with an L/H value of 6.0. Even though the room is 
much longer, the flow pattern is very similar to that of the square enclosure, with 
two large eddy patterns developing, with the stronger eddy near the hot wall 
occupying approximately three-quarters of the enclosure (Larson 1972). 

6 F L M  78 
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FIGURE 12. Velocity profile a t  enclosure mid-height (y/H = 0.5) for a hot ceiling with and 
without radiant heat transfer, 7 = 10, #r = lo8, E = 0.9. -, with radiant heat transfer; 
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FIQURE 13. Temperature distribution at  enclosure mid-height (y/H = 0.5) for 8 hot ceiling 
with and without radiant heat transfer, 7 = 10, at. = lo8, E = 0.9. - , with radiant 
heat transfer; - - - , without. 
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FIGURE 14. Net heat flux from hot left wall at y/H = 0.5, Gr = los, E = 0.9. The upper 
curve is for radiant heat flux and the lower for convective heat flux. 

Hot ceil ing and hot floor 

The effects of a ceiling fire were examined by assuming the surface of wall 2 
(upper wall) to be hot (0 = 1.0) and the other wall surfaces to be initially a t  room 
temperature (0 = 0.3) for a square enclosure and a Grashof number of 106. The 
influence of the radiative heat transfer was very large, as indicated in figure 12. 
The radiative transfer induces much stronger convective currents which are, in 
fact, opposite in direction to those induced by convection alone. As a result the 
temperature distribution in the enclosure is altered considerably as shown in 
figure 13. The effect of a local hot spot centred on the upper surface produced 
similar results. 

The effects of a floor fire were also examined. With the entire floor heated, the 
6-2 
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development of the streamlines and temperature profiles were very similar to 
those for a hot ceiling. The influence of radiation was again very pronounced with 
the temperature everywhere within the enclosure increasing much more rapidly 
when radiation was included. 

7. Heat transfer 
A general correlation of the heat-transfer results is not possible owing to the 

complex interactions of the temperature and flow fields in the enclosure. Only a 
few of the many possible conditions that could exist have been examined; how- 
ever, i t  appears that there is no apriori method which can predict the radiative, 
convective and total heat transfer without solving the entire problem. Figure 14 
compares the radiative and convective heat flux from the midpoint of the hot 
left wall as a function of time. The rapid thermal response of the wall surfaces 
causes the radiative heat transfer to decrease sharply to a point where it is 
approximately a factor of ten larger than the convective transfer. In  general, for 
the conditions examined, the radiative heat transfer was one or two orders of 
magnitude larger than the convective transfer and was essentially solely respon- 
sible for the temperature rise of the walls surrounding the heat source. This 
implies that fire spread in enclosures is primarily dominated by radiative trznsfer. 
Therefore, attempts to predict the thermal response and enclosed fluid-flow 
behaviour caused by a fire or other high temperature heat source requires the 
inclusion of radiation heat transfer if reasonable results are to be obtained. 

8. Conclusions 
When portions of an enclosure are at temperatures associated with fires, 

radiation is the predominant mechanism of heat transfer. The convective currents 
are significantly altered by the radiative heat transfer, frequently causing 
changes in both magnitude and direction, Simulation of a fire or other high 
temperature heat source in an enclosure therefore requires that radiation be 
included. The study also demonstrates that reasonably straightforward analyti- 
cal and numerical techniques can be used to model the behaviour of complex 
natural phenomena. 

This work was supported by the United States Energy Research and Develop- 
ment Administration. 
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